General Information of the Protein
Protein ID |
PT03105
|
||||
---|---|---|---|---|---|
Protein Name |
Receptor-interacting serine/threonine-protein kinase 3
|
||||
Secondarily Protein Name |
RIP-like protein kinase 3
Receptor-interacting protein 3
|
||||
Gene Name |
RIPK3
|
||||
Secondarily Gene Name |
RIP3
|
||||
Sequence |
MSCVKLWPSGAPAPLVSIEELENQELVGKGGFGTVFRAQHRKWGYDVAVKIVNSKAISREVKAMASLDNEFVLRLEGVIEKVNWDQDPKPALVTKFMENGSLSGLLQSQCPRPWPLLCRLLKEVVLGMFYLHDQNPVLLHRDLKPSNVLLDPELHVKLADFGLSTFQGGSQSGTGSGEPGGTLGYLAPELFVNVNRKASTASDVYSFGILMWAVLAGREVELPTEPSLVYEAVCNRQNRPSLAELPQAGPETPGLEGLKELMQLCWSSEPKDRPSFQECLPKTDEVFQMVENNMNAAVSTVKDFLSQLRSSNRRFSIPESGQGGTEMDGFRRTIENQHSRNDVMVSEWLNKLNLEEPPSSVPKKCPSLTKRSRAQEEQVPQAWTAGTSSDSMAQPPQTPETSTFRNQMPSPTSTGTPSPGPRGNQGAERQGMNWSCRTPEPNPVTGRPLVNIYNCSGVQVGDNNYLTMQQTTALPTWGLAPSGKGRGLQHPPPVGSQEGPKDPEAWSRPQGWYNHSGK
Show/Hide
|
||||
Organism |
Homo sapiens, Human
|
||||
Protein Classification |
Enzyme
>
Kinase
>
Protein Kinase
>
TKL protein kinase group
|
||||
Function |
Serine/threonine-protein kinase that activates necroptosis and apoptosis, two parallel forms of cell death (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:29883609, PubMed:32657447). Necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members, is triggered by RIPK3 following activation by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:29883609, PubMed:32298652). Activated RIPK3 forms a necrosis-inducing complex and mediates phosphorylation of MLKL, promoting MLKL localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:25316792, PubMed:29883609). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Also regulates apoptosis: apoptosis depends on RIPK1, FADD and CASP8, and is independent of MLKL and RIPK3 kinase activity (By similarity). Phosphorylates RIPK1: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). In some cell types, also able to restrict viral replication by promoting cell death-independent responses (By similarity). In response to Zika virus infection in neurons, promotes a cell death-independent pathway that restricts viral replication: together with ZBP1, promotes a death-independent transcriptional program that modifies the cellular metabolism via up-regulation expression of the enzyme ACOD1/IRG1 and production of the metabolite itaconate (By similarity). Itaconate inhibits the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes (By similarity). RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL (PubMed:19498109). These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production (PubMed:19498109).
Show/Hide
|
||||
Uniprot ID |
Show/Hide
|
||||
HGNC ID | |||||
Subcellular Location |
Cytoplasm
Cytosol
Nucleus
|
Map of Molecular Bioactivity Related to the Protein
Map of Molecular Bioactivity Related to the Protein Protein Cell Line Compound Bioactivity Value: <= 0.1 μM > 0.1 μM and <= 10 μM > 10 μM Imprecise Activity |
|
---|
Table of Molecular Bioactivities Related to the Protein
Cell Line ID: CL000013 , Sf9
Biochemical Assays
Compound ID | Compound Name | Compound Formula | |
CP0095082 |
DABRAFENIB
Show/Hide
|
C23H20F3N5O2S2
|
1 |
1 | IC50 = 2 nM |
---|